3.727 \(\int \frac {1}{(a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)}} \, dx\)

Optimal. Leaf size=317 \[ \frac {b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{2 a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)^2}-\frac {b \left (7 a^2-b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 a d \left (a^2-b^2\right )^2 (a \sec (c+d x)+b)}+\frac {3 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b d \left (a^2-b^2\right )^2}+\frac {\left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a d \left (a^2-b^2\right )^2}-\frac {\left (3 a^4+10 a^2 b^2-b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a b d (a-b)^2 (a+b)^3} \]

[Out]

1/2*b^2*sin(d*x+c)*sec(d*x+c)^(1/2)/a/(a^2-b^2)/d/(b+a*sec(d*x+c))^2-1/4*b*(7*a^2-b^2)*sin(d*x+c)*sec(d*x+c)^(
1/2)/a/(a^2-b^2)^2/d/(b+a*sec(d*x+c))+1/4*(5*a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic
E(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/(a^2-b^2)^2/d+3/4*(a^2+b^2)*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b/(a^2
-b^2)^2/d-1/4*(3*a^4+10*a^2*b^2-b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/
2*c),2*b/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/(a-b)^2/b/(a+b)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.75, antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3238, 3845, 4100, 4106, 3849, 2805, 3787, 3771, 2639, 2641} \[ \frac {b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{2 a d \left (a^2-b^2\right ) (a \sec (c+d x)+b)^2}-\frac {b \left (7 a^2-b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 a d \left (a^2-b^2\right )^2 (a \sec (c+d x)+b)}+\frac {3 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 b d \left (a^2-b^2\right )^2}+\frac {\left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a d \left (a^2-b^2\right )^2}-\frac {\left (10 a^2 b^2+3 a^4-b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a b d (a-b)^2 (a+b)^3} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*Cos[c + d*x])^3*Sqrt[Sec[c + d*x]]),x]

[Out]

((5*a^2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*a*(a^2 - b^2)^2*d) + (3*(a^
2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*b*(a^2 - b^2)^2*d) - ((3*a^4 + 10
*a^2*b^2 - b^4)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(4*a*(a - b)^
2*b*(a + b)^3*d) + (b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(2*a*(a^2 - b^2)*d*(b + a*Sec[c + d*x])^2) - (b*(7*a^
2 - b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*a*(a^2 - b^2)^2*d*(b + a*Sec[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3845

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(a^2*
d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3))/(b*f*(m + 1)*(a^2 - b^2)), x] + Dist[d
^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b*(
m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && N
eQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4100

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{(a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)}} \, dx &=\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(b+a \sec (c+d x))^3} \, dx\\ &=\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}+\frac {\int \frac {-\frac {b^2}{2}-2 a b \sec (c+d x)+\frac {1}{2} \left (4 a^2-b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )}\\ &=\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}-\frac {b \left (7 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}+\frac {\int \frac {\frac {1}{4} b^2 \left (5 a^2+b^2\right )+a b \left (2 a^2+b^2\right ) \sec (c+d x)-\frac {1}{4} b^2 \left (7 a^2-b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))} \, dx}{2 a b \left (a^2-b^2\right )^2}\\ &=\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}-\frac {b \left (7 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}+\frac {\int \frac {\frac {1}{4} b^3 \left (5 a^2+b^2\right )-\left (-a b^2 \left (2 a^2+b^2\right )+\frac {1}{4} a b^2 \left (5 a^2+b^2\right )\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{2 a b^3 \left (a^2-b^2\right )^2}-\frac {\left (3 a^4+10 a^2 b^2-b^4\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{b+a \sec (c+d x)} \, dx}{8 a b \left (a^2-b^2\right )^2}\\ &=\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}-\frac {b \left (7 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}+\frac {\left (3 \left (a^2+b^2\right )\right ) \int \sqrt {\sec (c+d x)} \, dx}{8 b \left (a^2-b^2\right )^2}+\frac {\left (5 a^2+b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{8 a \left (a^2-b^2\right )^2}-\frac {\left (\left (3 a^4+10 a^2 b^2-b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{8 a b \left (a^2-b^2\right )^2}\\ &=-\frac {\left (3 a^4+10 a^2 b^2-b^4\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a (a-b)^2 b (a+b)^3 d}+\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}-\frac {b \left (7 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}+\frac {\left (3 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{8 b \left (a^2-b^2\right )^2}+\frac {\left (\left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{8 a \left (a^2-b^2\right )^2}\\ &=\frac {\left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a \left (a^2-b^2\right )^2 d}+\frac {3 \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 b \left (a^2-b^2\right )^2 d}-\frac {\left (3 a^4+10 a^2 b^2-b^4\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{4 a (a-b)^2 b (a+b)^3 d}+\frac {b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (b+a \sec (c+d x))^2}-\frac {b \left (7 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (b+a \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 5.98, size = 395, normalized size = 1.25 \[ \frac {\frac {2 \cot (c+d x) \left (6 a^4 \sqrt {-\tan ^2(c+d x)} \Pi \left (-\frac {a}{b};\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )+5 a^3 b \sec ^{\frac {3}{2}}(c+d x)-5 a^3 b \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)-2 a b \left (5 a^2+b^2\right ) \sqrt {-\tan ^2(c+d x)} E\left (\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )+20 a^2 b^2 \sqrt {-\tan ^2(c+d x)} \Pi \left (-\frac {a}{b};\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )+2 b \left (5 a^3-7 a^2 b+a b^2+b^3\right ) \sqrt {-\tan ^2(c+d x)} F\left (\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )-2 b^4 \sqrt {-\tan ^2(c+d x)} \Pi \left (-\frac {a}{b};\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )+a b^3 \sec ^{\frac {3}{2}}(c+d x)-a b^3 \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)\right )}{a^2 b (a-b)^2 (a+b)^2}-\frac {4 b \sin (c+d x) \left (7 a^3+b \left (5 a^2+b^2\right ) \cos (c+d x)-a b^2\right )}{a \left (a^2-b^2\right )^2 \sqrt {\sec (c+d x)} (a+b \cos (c+d x))^2}}{16 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*Cos[c + d*x])^3*Sqrt[Sec[c + d*x]]),x]

[Out]

((-4*b*(7*a^3 - a*b^2 + b*(5*a^2 + b^2)*Cos[c + d*x])*Sin[c + d*x])/(a*(a^2 - b^2)^2*(a + b*Cos[c + d*x])^2*Sq
rt[Sec[c + d*x]]) + (2*Cot[c + d*x]*(5*a^3*b*Sec[c + d*x]^(3/2) + a*b^3*Sec[c + d*x]^(3/2) - 5*a^3*b*Cos[2*(c
+ d*x)]*Sec[c + d*x]^(3/2) - a*b^3*Cos[2*(c + d*x)]*Sec[c + d*x]^(3/2) - 2*a*b*(5*a^2 + b^2)*EllipticE[ArcSin[
Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2*b*(5*a^3 - 7*a^2*b + a*b^2 + b^3)*EllipticF[ArcSin[Sqrt[Sec
[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 6*a^4*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c
+ d*x]^2] + 20*a^2*b^2*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] - 2*b^4*Ellipt
icPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2]))/(a^2*(a - b)^2*b*(a + b)^2))/(16*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c) + a)^3*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

maple [B]  time = 3.83, size = 1736, normalized size = 5.48 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*cos(d*x+c))^3/sec(d*x+c)^(1/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/b*a*(-1/2*b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)^2-3/4*b^2*(3*a^2-b^2)/a^2/(a
^2-b^2)^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-
b)-7/8/(a+b)/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4
+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/4/(a+b)/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2))*b+3/8/(a+b)/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2
)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-9/8*b/(a^2-b^
2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3/8*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^
(1/2))+9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3/8*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(c
os(1/2*d*x+1/2*c),2^(1/2))-15/4*a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b
),2^(1/2))+3/2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-3/4/a^2/
(a^2-b^2)^2/(-2*a*b+2*b^2)*b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))+2/b*(-b^2/a/(a^2-b^2)*
cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-1/2/(a+
b)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*
x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
+1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi
(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-
2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*cos(d*x + c) + a)^3*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^3),x)

[Out]

int(1/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^3), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \cos {\left (c + d x \right )}\right )^{3} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))**3/sec(d*x+c)**(1/2),x)

[Out]

Integral(1/((a + b*cos(c + d*x))**3*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________